楕円関数論 (9) Weierstrass の楕円関数

緒方 秀教

電気通信大学 大学院情報理工学研究科 情報・ネットワーク工学専攻

2020年12月22日(火)

楕円関数の定義

二重周期性を持つ有理型関数.

- しかし、具体的な楕円関数として、我々はまだ Jacobi の楕円関数しか知らない.
- 関数 sn, cn, dn を考えて、複素関数に拡張してみたら、 たまたま二重周期性を持っていた.

楕円関数の定義

- 二重周期性を持つ有理型関数.
 - しかし、具体的な楕円関数として、我々はまだ Jacobi の楕円関数しか知らない.
 - 関数 sn, cn, dn を考えて、複素関数に拡張してみたら、 たまたま二重周期性を持っていた.

これからやりたいこと

周期 ω_1, ω_2 を先に与えて、 ω_1, ω_2 を周期に持つ楕円関数をつくる.

周期 ω_1, ω_2 を先に与えて、 ω_1, ω_2 を周期に持つ楕円関数をつくる.

どういうアプローチをとるか?

周期 ω_1, ω_2 を先に与えて、 ω_1, ω_2 を周期に持つ楕円関数をつくる.

どういうアプローチをとるか?

関数 $\frac{\pi^2}{\sin^2 \pi z}$ からヒントを得る.

- 周期1の周期関数.
- 部分分数展開

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}.$$

周期格子A

$$\omega_1, \omega_2 \in \mathbb{C} - \{0\}, \quad \operatorname{Im}(\omega_2/\omega_1) > 0,$$

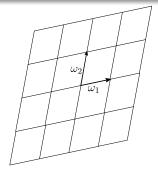
周期格子 $\Lambda \equiv \{ m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z} \}.$

周期 ω_1,ω_2 を周期に持つ楕円関数を

$$\sum_{\omega \in \Lambda} \frac{1}{(u-\omega)^s}$$

の形でつくろう.

Weierstrass の楕円関数



周期格子

次の形の楕円関数をつくりたい.

$$\sum_{\omega \in \Lambda} \frac{1}{(u-\omega)^s}$$

では、s はどの範囲の値なら、右辺は収束するか? (参考)

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \quad \leftrightarrow \quad \sum_{n=1}^{\infty} \frac{1}{n^s} \quad \begin{cases} s = 2, 3, \dots & \text{Qr} \\ s = 1 \end{cases} \quad \text{\text{$\Re b}}.$$

周期格子

次の形の楕円関数をつくりたい.

$$\sum_{\omega \in \Lambda} \frac{1}{(u-\omega)^s}$$

では, *s* はどの範囲の値なら,右辺は収束するか? (参考)

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \quad \leftrightarrow \quad \sum_{n=1}^{\infty} \frac{1}{n^s} \quad \begin{cases} s = 2, 3, \dots & \text{Qr} \\ s = 1 \end{cases} \quad \text{\text{$\Re b}}.$$

基本補題

$$s \geq 3$$
 ならば $\sum_{\omega \in \Lambda - \{0\}} rac{1}{|\omega|^s} < \infty.$

周期格子

基本補題

$$s \geq 3$$
 ならば $\sum_{\omega \in \Lambda - \{0\}} rac{1}{|\omega|^s} < \infty.$

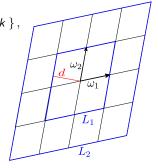
(証明)

$$L_k = \{ x\omega_1 + y\omega_2 \mid x, y \in \mathbb{R}, \max\{|x|, |y|\} = k \},$$

 $\Lambda_k = \Lambda \cap L_k \quad (k = 1, 2, ...),$
 $d = \min\{ |z| \mid z \in L_1 \}$

$$\sum_{\omega \neq 0} \frac{1}{|\omega|^s} = \sum_{k=1}^{\infty} \sum_{\omega \in \Lambda_k} \frac{1}{|\omega|^s}$$

$$\leq \sum_{k=1}^{\infty} \frac{8k}{(kd)^s} = \frac{8}{d^s} \sum_{k=1}^{\infty} \frac{1}{k^{s-1}} < \infty.$$



楕円関数 $\sum_{\omega} (\mathbf{u} - \omega)^{-3}$

前頁の「基本補題」から、次の形の楕円関数を考える.

$$f(u) \equiv \sum_{\omega \in \Lambda} \frac{1}{(u-\omega)^3}.$$

- f(u) は \mathbb{C} で有理型関数である($u = \omega \in \Lambda$ に 3 位の極を持つ). 証明は「補遺」に記してある.
- f(u) は奇関数である.

$$f(-u) = -\sum_{\omega \neq 0} \frac{1}{(u+\omega)^3} = -\sum_{\omega \neq 0} \frac{1}{(u-\omega)^3} = -f(u).$$

 $-\omega$ について和を取るのは、 ω について和を取るのと同じ.

• f(u) は $\omega \in \Lambda$ を周期にもつ楕円関数である.

● 位数1の楕円関数は存在しない。復習(動画「楕円関数論(4)」参照))

楕円関数の位数 = 周期平行四辺形内の零点の個数 = 周期平行四辺形内の極の個数.

ただし, 零点・極は多重度分ダブって数える.

f(u) を楕円関数(基本周期 ω_1,ω_2),P を周期平行四辺形とする。 留数定理と f(u) の周期性より

$$\frac{1}{2\pi \mathrm{i}} \oint_P f(u) \mathrm{d}u = \sum (P 内の極の留数) = 0.$$

よって、P内に f(u) の 1 位の留数 $\neq 0$ の極が 1 個だけあることはあり得ない.

• $f(u) = \sum_{\omega \neq 0} (u - \omega)^{-3}$ は位数 3 の楕円関数.

● 位数1の楕円関数は存在しない。復習(動画「楕円関数論(4)」参照))

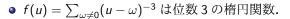
楕円関数の位数 = 周期平行四辺形内の零点の個数 = 周期平行四辺形内の極の個数.

ただし、零点・極は多重度分ダブって数える.

f(u) を楕円関数(基本周期 ω_1,ω_2),P を周期平行四辺形とする. 留数定理と f(u) の周期性より

$$\frac{1}{2\pi \mathrm{i}} \oint_P f(u) \mathrm{d}u = \sum (P 内の極の留数) = 0.$$

よって、P内に f(u) の 1 位の留数 $\neq 0$ の極が 1 個だけあることはあり得ない.



位数2の楕円関数をつくってみる.

$$f(u) - \frac{1}{u^3} = \sum_{\omega \neq 0} \frac{1}{(u - \omega)^3}$$

の両辺を原点 O から点 $u \in \mathbb{C} - \Lambda$ を結ぶ路の上で積分する. 右辺は一様収束ゆえ項別積分が可能であり,

$$\int_0^u \left(f(u) - \frac{1}{u^3} \right) du = -\frac{1}{2} \sum_{\omega \neq 0} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega^2} \right),$$
$$\frac{1}{u^2} - 2 \int_0^u \left(f(u) - \frac{1}{u^3} \right) du = \frac{1}{u^2} + \sum_{\omega \neq 0} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega^2} \right).$$

右辺が、"Weierstrass の \wp 関数"である.

Weierstrass の \wp (ペー) 関数

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \in \Lambda - \{0\}} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega^2} \right).$$

- ρ関数の特徴.
 - 全複素平面 C で有理型関数であり、

$$\omega \in \Lambda = \{ m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z} \}$$

に 2 位の極をもつ.

- 偶関数である.
- 楕円関数である. $\omega \in \Lambda$ を周期にもつ.
- 楕円関数としての位数は2である.

周期平行四辺形内の零点の個数 = 周期平行四辺形内の極の個数 = 2.

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \in \Lambda - \{0\}} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega^2} \right).$$

℘(u) の各特徴の証明

• $\wp(u)$ は \mathbb{C} で有理型関数であり、 $\omega \in \Lambda$ に 2 位の極をもつ.

$$\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} = \frac{1}{\omega^2} \left(1 - \frac{u}{\omega}\right)^{-2} - \frac{1}{\omega^2} = \frac{2u}{\omega^3} + \mathcal{O}(\omega^{-4})$$

であるから、 $\wp(u)$ の各項は $O(\omega^{-3})$ であり、無限和は収束する. ちゃんとした証明は「補遺」に記す.

ullet $\wp(u)$ は偶関数であること. $f(u) = \sum_{\omega \neq 0} (u - \omega)^{-3} \, が奇関数であることと同様にして示される.$

℘(u) の各特徴の証明

℘(u) が楕円関数であること.

$$\wp'(u) = -2\sum (u - \omega)^{-3}$$
 は楕円関数であったから、 $\omega \in \Lambda$ とすると、

$$\wp'(u+\omega)-\wp'(u)=0.$$

両辺を積分して,

$$\wp(u+\omega)-\wp(u)=\text{const.}$$

 $u = -\omega/2$ を代入すると、 $\wp(u)$ は偶関数であるから、

const. =
$$\wp(\omega/2) - \wp(-\omega/2) = \wp(\omega/2) - \wp(\omega/2) = 0$$
.

• 楕円関数としての位数は 2 であること. ほぼ明らかに思えるが、ちゃんとした証明を「補遺」中の、 $\wp(u)$ が $\mathbb C$ で 有理型関数であることの証明の中で述べる.

これから $\wp(u)$ が満たす微分方程式を求める.

以下の議論で、楕円関数の性質が有機的に用いられていることに注意.

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \neq 0} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega^2} \right)$$

$$= \frac{1}{u^2} + \sum_{\omega \neq 0} \left\{ \frac{1}{\omega^2} \left(1 - \frac{u}{\omega} \right)^{-2} - \frac{1}{\omega^2} \right\}$$

$$= \frac{1}{u^2} + \sum_{\omega \neq 0} \left[\frac{1}{\omega^2} \left\{ 1 + 2\frac{u}{\omega} + 3\left(\frac{u}{\omega}\right)^2 + \cdots \right\} - \frac{1}{\omega^2} \right]$$

$$= \frac{1}{u^2} + 2\left(\sum_{\omega \neq 0} \frac{1}{\omega^3} \right) u + 3\left(\sum_{\omega \neq 0} \frac{1}{\omega^4} \right) u^2 + \cdots$$

ここで、奇数 s に対し $\sum_{\omega \to 0} \omega^{-s} = 0$ であることに注意.

$$\therefore \quad \sum_{\omega \neq 0} \frac{1}{\omega^s} = \sum_{\omega \neq 0} \frac{1}{(-\omega)^s} = -\sum_{\omega \neq 0} \frac{1}{\omega^s}.$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺 ・ 釣९@

$$\wp(u) = \frac{1}{u^2} + 3G_4u^2 + 5G_6u^4 + \cdots,$$

$$G_{2k} = \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^{2k}} \quad (k = 2, 3, \dots) \quad \text{Eisenstein 級数.}$$

$$\wp'(u) = -\frac{2}{u^3} + 6G_4u + 20G_6u^3 + O(u^5),$$

$$\wp'(u)^2 = \frac{4}{u^6} - 24G_4\frac{1}{u^2} - 80G_6 + O(u^2),$$

$$4\wp(u)^3 = 4\frac{1}{u^6} + 36G_4\frac{1}{u^2} + 60G_6 + O(u^2),$$

$$\wp'(u)^2 - 4\wp(u)^3 = -60G_4\frac{1}{u^2} - 140G_6 + O(u^2),$$

$$\vdots \quad \wp'(u)^2 - 4\wp(u)^3 + 60G_4\wp(u) + 140G_6 = O(u^2).$$

$$\wp'(u)^2 - 4\wp(u)^3 + 60G_4\wp(u) + 140G_6 = O(u^2). \tag{1}$$

左辺は楕円関数であり、極があるとすれば $u = \omega \in \Lambda$ に限る. ところが、右辺をみれば $u \to 0$ で両辺 $\to 0$ であり、u = 0 には極はない、二重周期性より、左辺は全複素平面で極を持たない楕円関数である。極を持たない楕円関数は定数関数に限るから.

$$\wp'(u)^2 - 4\wp(u)^3 + 60G_4\wp(u) + 140G_6 = \text{const.}$$

(1) $\forall u \to 0$ とすることにより, const. = 0.

$$\wp'(u)^2 - 4\wp(u)^3 + 60G_4\wp(u) + 140G_6 = O(u^2).$$
 (1)

左辺は楕円関数であり、極があるとすれば $u = \omega \in \Lambda$ に限る. ところが、右辺をみれば $u \to 0$ で両辺 $\to 0$ であり、u = 0 には極はない、二重周期性より、左辺は全複素平面で極を持たない楕円関数である。極を持たない楕円関数は定数関数に限るから、

$$\wp'(u)^2 - 4\wp(u)^3 + 60G_4\wp(u) + 140G_6 = const.$$

(1) $\sigma u \rightarrow 0$ とすることにより、const. = 0.

Ø 関数が満たす微分方程式

$$\wp'(u)^{2} = 4\wp(u)^{3} - g_{2}\wp(u) - g_{3},$$

$$g_{2} = 60 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^{4}}, \quad g_{3} = 140 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^{6}}.$$

$$\omega_3 := -\omega_1 - \omega_2$$
, i.e. $\omega_1 + \omega_2 + \omega_3 = 0$.

$$e_j := \wp\left(\frac{\omega_j}{2}\right), \quad j = 1, 2, 3.$$

 $\wp(u)-e_j$ (j=1,2,3) は 2 位の楕円関数であり, $u\equiv \omega_j/2\mod\Lambda$ に零点を持つ.

- $2(\omega_j/2) \equiv 0 \mod \Lambda$,
- $\wp(u) e_j$ の極は $u \equiv 0 \mod \Lambda$ (2位) だけ.
- 楕円関数の∑(零点)≡∑(極) mod Λ.
 (動画「楕円関数論(4)」参照)

よって, $\wp(u)$ の \sum (零点) \equiv 0 mod Λ.

 $\wp(u) - e_j \ (j = 1, 2, 3)$ の零点は $u \equiv \omega_j/2 \mod \Lambda$ だけであり、それは 2 位の零点である $(\wp'(\omega_j/2) = 0)$.

$$\wp'(u)^2$$
, $(\wp(u) - e_1)(\wp(u) - e_2)(\wp(u) - e_3)$.

両者は同じ周期を持つ楕円関数であり,

 $u \equiv \omega_1/2, \omega_2/2, \omega_3/2$ に 2 位の零点を持ち、 $u \equiv 0$ に 6 位の極を持つ、したがって、両者の比は全複素平面で正則な楕円関数であり、

Liouville の定理により定数である:

$$\wp'(u)^2 = C(\wp(u) - e_1)(\wp(u) - e_2)(\wp(u) - e_3)$$
 (C : const.).
走辺 = $\left(-\frac{2}{u^3} + \cdots\right)^2 = \frac{4}{u^6} + \cdots$,
右辺 = $C\left(\frac{1}{u^2} + \cdots\right)\left(\frac{1}{u^2} + \cdots\right)\left(\frac{1}{u^2} + \cdots\right) = \frac{C}{u^6} + \cdots$,
 $\therefore C = 4$.

$$\wp'(u)^2 = 4(\wp(u) - e_1)(\wp(u) - e_2)(\wp(u) - e_3).$$

まとめ: $\wp(u)$ が満たす微分方程式

$$\wp'(u)^{2} = 4\wp(u)^{3} - g_{2}\wp(u) - g_{3}$$

= 4(\omega(u) - e_{1})(\omega(u) - e_{2})(\omega(u) - e_{3}),

$$g_2 = 60 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^4}, \quad g_3 = 140 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^6},$$
 $e_j = \wp\left(\frac{\omega_j}{2}\right) \quad (j = 1, 2, 3)$ $(\omega_1 + \omega_2 + \omega_3 = 0).$

まとめ: $\wp(u)$ が満たす微分方程式

$$\wp'(u)^{2} = 4\wp(u)^{3} - g_{2}\wp(u) - g_{3}$$

= 4(\omega(u) - e_{1})(\omega(u) - e_{2})(\omega(u) - e_{3}),

$$g_2 = 60 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^4}, \quad g_3 = 140 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^6},$$
 $e_j = \wp\left(\frac{\omega_j}{2}\right) \quad (j = 1, 2, 3)$
 $(\omega_1 + \omega_2 + \omega_3 = 0).$

$$e_i \neq e_i \quad (i \neq j).$$

(証明) 例えば $e_1=e_2$ とすると, $\wp(u)-e_1$ は $u\equiv\omega_1/2,\omega_2/2$ に 2 位の零点を持ち,周期平行四辺形内に多重度を込めて 4 個の零点を持つ.

これは、 $\wp(u) - e_1$ が 2 位の楕円関数であることに矛盾する.

$$(\wp'(u)^2 =)4\wp(u)^3 - g_2\wp(u) - g_3 = 4(\wp(u) - e_1)(\wp(u) - e_2)(\wp(u) - e_3).$$

ここで、 $\wp(u)$ は周期平行四辺形内で任意の複素数の値を2度とる.

: 任意の複素数定数 c をとると、 $\wp(u)-c$ は 2 位の楕円関数なので、周期平行四辺形内に零点を 2 個とる.

したがって、次の多項式の恒等式が成り立つ.

$$4x^3 - g_2x - g_3 = 4(x - e_1)(x - e_2)(x - e_3).$$

根と係数の関係

$$\begin{cases} e_1 + e_2 + e_3 = 0 \\ e_1 e_2 + e_2 e_3 + e_3 e_1 = -g_2/4 \\ e_1 e_2 e_3 = g_3/4 \end{cases}$$

判別式 (discriminant)

$$\Delta \equiv 16(e_1 - e_2)^2(e_2 - e_3)^2(e_3 - e_1)^2$$

= $g_2^3 - 27g_3^2$.

- $e_i \neq e_j \ (i \neq j) \ \ \ \ \ \ \Delta = g_2^3 27g_3^2 \neq 0.$
- $*\Delta = g_2^3 27g_3^2$ は保型形式(モジュラー形式)の理論で重要となる.

$$g_2 = 60 \sum_{(m,n) \neq (0,0)} \frac{1}{(m\omega_1 + n\omega_2)^4}, \quad g_3 = 140 \sum_{(m,n) \neq (0,0)} \frac{1}{(m\omega_1 + n\omega_2)^6}.$$

- ▲ は周期格子 Λ の基底 ω₁, ω₂ の関数である.
- ところが, Λ の基底 ω₁,ω₂ のとり方は一意的ではない。
- 基底 ω_1, ω_2 の関数で、基底の交換に対しある種の変換則に従うのものが 保型形式である。

まとめ

- 周期 ω_1, ω_2 を先に与えて、それらを周期に持つ楕円関数をつくった.
- Weierstrass の ℘ 関数(2 位の楕円関数).

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \in \Lambda - \{0\}} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega^2} \right),$$

 Λ : 周期格子(基底 ω_1, ω_2).

℘(u) が満たす微分方程式.

$$\wp'(u)^2 = 4\wp(u)^3 - g_2\wp(u) - g_3.$$

判別式.

次回の予定.

- Weierstrass の zeta 関数, sigma 関数.
- Weierstrass 楕円関数とテータ関数との関係.
- Weierstrass 楕円関数の数値計算.

補遺: $f(u) = \sum (u - \omega)^{-3}$ が有理型関数であること

$$f(u) \equiv \sum_{\omega \in \Lambda} \frac{1}{(u-\omega)^3}.$$

f(u) は \mathbb{C} で有理型関数である($u = \omega \in \Lambda$ に 3 位の極を持つ).

(証明) R > 0 を任意に取る. f(u) が |u| < R で有理型関数であり, $u = \omega \in \Lambda$ ($|\omega| < R$) に 3 位の極を持つことを示せばよい.

$$f(u) = \sum_{|\omega| < 2R} \frac{1}{(u-\omega)^3} + \sum_{|\omega| \ge 2R} \frac{1}{(u-\omega)^3} =: f_1(u) + f_2(u).$$

 $f_1(u)$ は $u = \omega$ に 3 位の極を持つ有理関数であるから, $f_2(u)$ が |u| < R で正則 であることを言えばよい. ϵ (0 < ϵ < R) を任意に取れば, $|u| \le R - \epsilon$ のとき, $|\omega| > 2R$ なる ω に対して $|u| < R < |\omega|/2$ であるから,

$$\left|\frac{1}{(u-\omega)^3}\right| \leq \frac{1}{(|\omega|-|u|)^3} \leq \frac{1}{(|\omega|-|\omega|/2)^3} = \frac{8}{|\omega|^3}.$$

そして $\sum |\omega|^{-3} < \infty$ であるから、Weierstrass の M-判定法より、 $f_2(u)$ は $|u| < R - \epsilon$ で絶対かつ一様収束する. したがって, $f_2(u)$ は |u| < R で正則関数 である.

補遺: $f(u) = \sum (u - \omega)^{-3}$ が有理型関数であること

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \neq 0} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right).$$

 $\wp(u)$ は全複素平面 $\mathbb C$ で有理型関数であり、 $u = \omega \in \Lambda$ に 2 位の極をもつ.

(証明) R>0 を任意に取り、 $\wp(u)$ が |u|< R で有理型関数であり、 $u=\omega\in\Lambda$ ($|\omega|< R$) に 2 位の極をもつことを言えばよい.

$$\wp(u) = \wp_1(u) + \wp_2(u),$$

$$\wp_1(u) = \frac{1}{u^2} + \sum_{0 < |\omega| < 2R} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right), \quad \wp_2(u) = \sum_{|\omega| \ge 2R} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right).$$

 $\wp_1(u)$ は $u=\omega\in\Lambda$ に 2 位の極をもつ有理関数である.よって, $\wp_2(u)$ が |u|< R で正則であることを言えばよい.

 ϵ (0 < ϵ < R) を任意に取る. $|u| \le R - \epsilon$ とする.

 $|\omega| \ge 2R$ α β $|\omega| < R \le |\omega|/2$ α α α

$$\left|\left(\frac{1}{(u-\omega)^2}-\frac{1}{\omega^2}\right)\right|=\left|\frac{u(2\omega-u)}{\omega^2(u-\omega)^2}\right|\leq \frac{|u|(2|\omega|+|u|)}{|\omega|^2(|\omega|-|u|)^2},$$

<ロ > ←□ > ←□ > ← ≧ > ← ≧ → へへへ

補遺: $f(u) = \sum (u - \omega)^{-3}$ が有理型関数であること

$$\begin{split} \left| \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right) \right| &\leq \frac{R(2|\omega| + |\omega|/2)}{|\omega|^2(|\omega| - |\omega|/2)^2} = \frac{10R}{|\omega|^3} \quad (|u| \leq R - \epsilon, \ |\omega| \geq 2R), \\ &\sum_{|\omega| \geq 2R} \frac{10R}{|\omega|^3} \leq 10R \sum_{\omega \neq 0} \frac{1}{|\omega|^3} < \infty. \end{split}$$

よって、Weierstrass の M-判定法により、

$$\wp_2(u) = \sum_{|\omega| > 2R} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right)$$

は $|u| \le R - \epsilon$ で絶対かつ一様収束し、|u| < R で正則関数となる. 以上より、 $\wp(u)$ は |u| < R で 2 位の極 $u = \omega \in \Lambda$ を除いて正則である.

補遺: $\Delta = g_2^3 - 27g_3^2$ の導出

$$4x^3 - g_2x - g_3 = 4(x - e_1)(x - e_2)(x - e_3)$$

の両辺をxで微分して $x = e_1, e_2, e_3$ とおいて,

$$4(e_1 - e_2)(e_1 - e_3) = 12e_1^2 - g_2,$$

$$4(e_2 - e_1)(e_2 - e_3) = 12e_2^2 - g_2,$$

$$4(e_3 - e_1)(e_3 - e_2) = 12e_3^2 - g_2.$$

3式の積をとって,

$$\begin{split} 4\Delta &= 64(e_1-e_2)^2(e_2-e_3)^2(e_3-e_1)^2 \\ &= (g_2-12e_1^2)(g_2-12e_2^2)(g_2-12e_3^2) \\ &= g_2^3-12(e_1^2+e_2^2+e_3^2)g_2^2+12^2(e_1^2e_2^2+e_2^2e_3^2+e_3^2e_1^2)g_2-12^3e_1^2e_2^2e_3^2. \end{split}$$

補遺: $\Delta = g_2^3 - 27g_3^2$ の導出

三次方程式の根と係数の関係より,

$$\begin{split} e_1^2 + e_2^2 + e_3^2 &= (e_1 + e_2 + e_3)^2 - 2(e_1e_2 + e_2e_3 + e_3e_1) = \frac{g_2}{2}, \\ e_1^2 e_2^2 + e_2^2 e_3^2 + e_3^2 e_1^2 &= (e_1e_2 + e_2e_3 + e_3e_1)^2 - 2e_1e_2e_3(e_1 + e_2 + e_3) = \frac{1}{4^2}g_2^2, \\ e_1^2 e_2^2 e_3^2 &= \frac{g_3^2}{4^2}, \\ & \qquad \qquad \therefore \quad \Delta = g_2^3 - 27g_3^2. \end{split}$$