数値解析と複素関数論 (8) 代用電荷法による解析関数近似 (1)

緒方 秀教

電気通信大学 大学院情報理工学研究科 情報・ネットワーク工学専攻

2021年4月26日(月)

今回の内容

代用電荷法:ポテンシャル問題の数値解法

$$\triangle u = 0$$
, $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ (二次元問題)

- 点電荷ポテンシャルの重ね合わせで解を近似.
- 計算(プログラミング)が簡単,計算量は少ない。
- ある条件下で高精度を達成.
- 代用電荷法による複素解析関数の近似。
- 二次元ポテンシャル流問題への応用.

村島定行:代用電荷法とその応用 POD 版—境界値問題の半解析的近似解法—,森北出版 (2008).

二次元ポテンシャル問題

$$\begin{cases} -\triangle u = 0 & \text{in } \mathcal{D} \\ u = f & \text{on } \partial \mathcal{D}, \end{cases}$$
$$\mathcal{D} \subset \mathbb{R}^2 \quad \text{figs.}$$

二次元ポテンシャル問題

$$\begin{cases} -\triangle u = 0 & \text{in } \mathscr{D} \\ u = f & \text{on } \partial \mathscr{D}, \end{cases}$$
$$\mathscr{D} \subset \mathbb{R}^2 \quad \text{figs.}$$

代用電荷法

二次元点電荷ポテンシャルの重ね合わせで解を近似する.

$$egin{aligned} u(m{x}) &\simeq u_N(m{x}) = Q_0 - rac{1}{2\pi} \sum_{j=1}^N Q_j \log \|m{x} - m{\xi}_j\|, \ m{\xi}_1, \dots, m{\xi}_N &\in \mathbb{R}^2 \setminus \overline{\mathscr{D}} &$$
電荷点 (given),

$$Q_0 \in \mathbb{R}, \,\, Q_1, \dots, Q_N \in \mathbb{R}$$
 電荷 (unknown), $\sum_{j=1}^N Q_j = 0.$

二次元 Euclid 平面 \mathbb{R}^2 を複素平面 \mathbb{C} と同一視する.

$$\mathbf{x} = (x, y) \leftrightarrow z = x + iy$$
 (同一視), $\mathcal{D} \subset \mathbb{C}$ 複素領域.

代用電荷法 (複素数表示)

二次元点電荷ポテンシャルの重ね合わせで解を近似する.

$$u(z) \simeq u_N(z) = Q_0 - \frac{1}{2\pi} \sum_{j=1}^N Q_j \log |z - \zeta_j|,$$
 $\zeta_1, \dots, \zeta_N \in \mathbb{C} \setminus \overline{\mathscr{D}}$ 電荷点 (given),

$$Q_0 \in \mathbb{R}, \ Q_1, \dots, Q_N \in \mathbb{R}$$
 電荷 (unknown), $\sum_{j=1}^N Q_j = 0.$

$$u(z) \simeq u_N(z) = Q_0 - \frac{1}{2\pi} \sum_{j=1}^N Q_j \log |z - \zeta_j|,$$

- 近似解 $u_N(z)$ は \mathcal{D} で Laplace 方程式 $\triangle u_N = 0$ を厳密に満たす.
- 境界条件 u = f on $\partial \mathcal{D}$

拘束条件

$$u_N(z_i) = f(z_i)$$
 ($i = 1, ..., N$),
 $z_1, ..., z_N \in \partial \mathcal{D}$ 拘束点 (given)

拘束条件 & $\sum_{j=1}^{N}Q_{j}=0$ ightarrow 電荷 Q_{0},Q_{1},\ldots,Q_{N} が決まる.

拘束条件& $\sum_{j=1}^{N}Q_{j}=0$ \rightarrow 電荷 Q_{0},Q_{1},\ldots,Q_{N} が決まる.

電荷 Q_0, Q_1, \ldots, Q_N が満たす連立一次方程式

$$\begin{bmatrix} G_{11} & \cdots & G_{1N} & 1 \\ \vdots & & \vdots & \vdots \\ G_{N1} & \cdots & G_{NN} & 1 \\ 1 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} Q_1 \\ \vdots \\ Q_N \\ Q_0 \end{bmatrix} = \begin{bmatrix} f(z_1) \\ \vdots \\ f(z_N) \\ 0 \end{bmatrix},$$

$$G_{ij} = -\frac{1}{2\pi} \log|z_i - \zeta_j|, \quad 1 \leq i, j \leq N.$$

- 係数行列は小規模密行列(Nは数十~数百程度).
- 直接解法(LU分解など)で解く.

$$u(z) \simeq u_N(z) = Q_0 - \frac{1}{2\pi} \sum_{j=1}^N Q_j \log |z - \zeta_j|,$$

$$\zeta_1,\ldots,\zeta_N\in\mathbb{C}\setminus\overline{\mathscr{D}},\quad Q_0,Q_1,\ldots,Q_N\in\mathbb{R}\quad\left(\sum_{j=1}^NQ_j=0
ight).$$

電荷に対する条件 $\sum_{i=1}^{N} Q_i = 0$ の意味.

スケール変換 $z \rightarrow cz$ (c: const.) に対して解 $u_N(z)$ は不変である.

$$Q_0 - rac{1}{2\pi} \sum_{j=1}^N Q_j \log |cz - c\zeta_j|$$
 $= Q_0 - rac{1}{2\pi} \sum_{j=1}^N Q_j \log |z - \zeta_j| - rac{1}{2\pi} \left\{ \sum_{j=1}^N Q_j \right\} \log c = u_N(z).$

$$egin{aligned} u(z) &\simeq u_N(z) = Q_0 - rac{1}{2\pi} \sum_{j=1}^N Q_j \log |z - \zeta_j|, \ & \ \zeta_1, \dots, \zeta_N \in \mathbb{C} \setminus \overline{\mathscr{D}}, \quad Q_0, Q_1, \dots, Q_N \in \mathbb{R} \quad \left(\sum_{j=1}^N Q_j = 0
ight). \end{aligned}$$

電荷に対する条件 $\sum_{i=1}^{N} Q_i = 0$ の意味.

スケール変換 $z \to cz$ (c: const.) に対して解 $u_N(z)$ は不変である.

室田一雄:代用電荷法におけるスキームの「不変性」について, 情報処理学会論文誌, **34** (1993) 533-535.

円板領域上のポテンシャル問題

$$\begin{cases} \triangle u = 0 & |z| < \rho \\ u = f & |z| = \rho. \end{cases}$$

拘束点 z_i ,電荷点 ζ_i ($i=1,\ldots,N$)。 同心円上に等間隔・同位相にとる.

$$egin{aligned} z_i &=
ho \omega^{i-1}, \quad \zeta_i &= q^{-1}
ho \omega^{i-1} \ \left(\ \omega &= \exp \left(rac{2\pi \mathrm{i}}{N}
ight), \ 0 < q < 1 \
ight). \end{aligned}$$

円板領域上のポテンシャル問題.

$$\begin{cases} \triangle u = 0 & |z| < \rho \\ u = f & |z| = \rho, \end{cases} \quad f = x^2 - y^2.$$

代用電荷法による近似解.

誤差:最大値原理より境界 $|z|=\rho$ 上で誤差の最大値を取る.

$$\epsilon_N := \max_{|z| \le \rho} |u(z) - u_N(z)| = \max_{|z| = \rho} |u(z) - u_N(z)|.$$

縦軸:誤差 ϵ_N

縦軸:電荷点数 N

- 指数関数的収束.
- 電荷点が領域 |z| < ρ から 離れるほど (q が小さい ほど),収束は速くなる.

(1/3) 代用電荷法:円板領域問題についての理論誤差評 価

定理 円板領域 $|z| < \rho$ の問題に代用電荷法を適用する.

拘束点 z_i, 電荷点 ζ_i (i = 1,..., N).

$$z_i =
ho \omega^{i-1}, \quad \zeta_i = q^{-1}
ho \omega^{i-1} \ \left(\ \omega = \exp \left(rac{2 \pi \mathrm{i}}{N}
ight), \quad 0 < q < 1 \
ight).$$

• 境界値 f は円周近傍 $\rho^2/r_0 \le |z| \le r_0$ $(r_0 > \rho)$ で解析的.

このとき、代用電荷法の近似解は指数関数的収束する.

$$\sup_{|z| \le \rho} |u(z) - u_N(z)| = \begin{cases} O((\rho/r_0)^{N/2}) & (\rho/r_0 \ge q^2) \\ O(q^N) & (\rho/r_0 < q^2). \end{cases}$$

M. Katsurada & H. Okamoto: A mathematical study of the charge simulation method I, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 35 (1988) 507-518.

先程の数値例の結果を理論誤差評価と比較する.

	誤差 ϵ_N	
q	数值実験	理論誤差評価
0.5	$O(0.49^{N})$	$O(0.5^{N})$
0.7	$O(0.69^{N})$	$O(0.7^{N})$
0.9	$O(0.89^{N})$	$O(0.9^{N})$

- 理論誤差評価は数値実験結果とよく符合する.
- 円板領域問題に対しては代用電荷法は高精度を達成する (指数関数的収束).

(1/3) 代用電荷法

円板領域以外の領域の問題でも…

問題領域が解析的な曲線を境界に持ち、境界値 f が解析的ならば、 代用電荷法は指数関数的収束する.

- M. Katsurada: Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37 (1990) 635–657.
- H. Ogata & M. Katsurada: Convergence of the invariant scheme of the method of fundamental solutions for two-dimensional potential problems in a Jordan region, Japan J. Indust. Comput. Math. 31 (2014) 231–262.
- 西田詩:2次元楕円領域における代用電荷法の数学的及び数値的考察, 日本応用数理学会論文誌,5(1995) 185-198.

(1/3) 代用電荷法

円板領域以外の領域の問題でも…

問題領域が解析的な曲線を境界に持ち、境界値 f が解析的ならば、 代用電荷法は指数関数的収束する.

- M. Katsurada: Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37 (1990) 635–657.
- H. Ogata & M. Katsurada: Convergence of the invariant scheme of the method of fundamental solutions for two-dimensional potential problems in a Jordan region, Japan J. Indust. Comput. Math. 31 (2014) 231–262.
- 西田詩:2次元楕円領域における代用電荷法の数学的及び数値的考察, 日本応用数理学会論文誌,5(1995) 185-198.

代用電荷法の特徴

- 計算(プログラミング)が簡単で計算量が少ない.
- ある条件下で高精度を達成する.

ある複素領域 $\mathcal D$ における複素解析関数 f(z) の近似を考える.

ある複素領域 $\mathscr D$ における複素解析関数 f(z) の近似を考える.

- Re f(z): \mathscr{D} 上で調和関数である(Laplace 方程式の解).
 - → 代用電荷法により近似できる.

$$\mathsf{Re}\, f(z) \simeq Q_0 - rac{1}{2\pi} \sum_{j=1}^N Q_j \log |z - \zeta_j|,$$
 $Q_0, Q_1, \ldots, Q_N \in \mathbb{R}, \quad \sum_{i=1}^N Q_j = 0, \quad \zeta_1, \ldots, \zeta_N \in \mathbb{C} \setminus \overline{\mathscr{D}}.$

● Im f(z): Re f(z) の共役調和関数.

$$\operatorname{Im} f(z) \simeq Q_0' - rac{1}{2\pi} \sum_{j=1}^N Q_j \operatorname{arg}(z - \zeta_j).$$

 $\log z = \log |z| + i \arg z$ に注意すれば、複素解析関数 f(z) に対する代用 電荷法による近似が得られる.

複素解析関数の代用電荷法近似

f(z): 複素領域 Ø における解析関数.

$$f(z) \simeq \widehat{Q}_0 - \frac{1}{2\pi} \sum_{j=1}^N Q_j \log(z - \zeta_j),$$

$$\widehat{Q}_0 \in \mathbb{C}, \quad Q_1, \dots, Q_N \in \mathbb{R}, \quad \sum_{j=1}^N Q_j = 0,$$
 $\zeta_1, \dots, \zeta_N \in \mathbb{C} \setminus \overline{\mathscr{D}}.$

複素対数ポテンシャルの重ね合わせで複素解析関数が近似できる.

代用電荷法による解析関数近似.

元来は数値等角写像で考案され用いられた.

- 天野要:代用電荷法に基づく等角写像の数値計算法:情報処理学会論文誌, 28 (1987) 697—704.
- K. Amano: A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains, J. Comput. Appl. Math., 53 (1994) 353–370.
- K. Amano: A charge simulation method for numerical conformal mapping onto circular and radial slit domains, SIAM J. Sci. Comput. 19 (1998) 1169–1187.
- 天野要, 岡野大,緒方秀教,下平博巳,杉原正顯:代用電荷法による非有 界な多重連結領域の統一的な数値等角写像の方法,情報処理学会論文誌, 42 (2001) 385-395.

二次元ポテンシャル流

- 非圧縮流体の二次元渦なし流れ.
- 複素解析関数で記述される.

流速ベクトル場 $\mathbf{v} = (u, v)$.

• 渦なし rot
$$\mathbf{v} = \frac{\partial \mathbf{v}}{\partial x} - \frac{\partial \mathbf{u}}{\partial y} = \mathbf{0}$$
,

$$\Rightarrow$$
 $\exists \Phi(x,y)$ (速度ポテンシャル) s.t. $u = \frac{\partial \Phi}{\partial x}$, $v = \frac{\partial \Phi}{\partial y}$.

• 非圧縮性 div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
,

$$\Rightarrow$$
 $\exists \Psi(x,y)$ (流れ関数) s.t. $u = \frac{\partial \Psi}{\partial y}$, $v = -\frac{\partial \Psi}{\partial x}$.

流速ベクトル場 $\mathbf{v} = (u, v)$.

• 渦なし rot
$$\mathbf{v} = \frac{\partial \mathbf{v}}{\partial x} - \frac{\partial \mathbf{u}}{\partial y} = \mathbf{0}$$
,

$$\Rightarrow$$
 $\exists \Phi(x,y)$ (速度ポテンシャル) s.t. $u = \frac{\partial \Phi}{\partial x}$, $v = \frac{\partial \Phi}{\partial y}$.

• 非圧縮性 div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
,

$$\Rightarrow$$
 $\exists \Psi(x,y)$ (流れ関数) s.t. $u = \frac{\partial \Psi}{\partial y}$, $v = -\frac{\partial \Psi}{\partial x}$.

$$u = \frac{\partial \Phi}{\partial x} = \frac{\partial \Psi}{\partial y}, \quad v = \frac{\partial \Phi}{\partial y} = -\frac{\partial \Psi}{\partial x}.$$

(Φ, Ψ) に対する Cauchy-Riemann 関係式.

複素速度ポテンシャル

流れの領域 ② における複素解析関数.

$$f(z) = \Phi(x, y) + i\Psi(x, y)$$
 ($z = x + iy$).
流速 $\mathbf{v} = (u, v) \leftarrow f'(z) = u - iv$. (1)

(1) の理由.

$$f'(z) = \frac{\partial \Phi}{\partial x} + i \frac{\partial \Psi}{\partial x}$$
$$= \frac{\partial \Phi}{\partial x} - i \frac{\partial \Phi}{\partial y} = u - iv.$$

$$\mathbf{v} = (u, v) = \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}\right)$$
$$= \left(\frac{\partial \Psi}{\partial y}, -\frac{\partial \Psi}{\partial x}\right).$$

赤破線 Φ = const. 青線 Ψ = const.

流れ関数 $\Psi = \operatorname{Im} f$ の意味.

$$\begin{split} \int_{\mathcal{C}} \mathrm{d}\Psi &= \int_{\mathcal{C}} \frac{\partial \Psi}{\partial x} \mathrm{d}x + \frac{\partial \Psi}{\partial y} \mathrm{d}y \\ &= \int_{\mathcal{C}} u \mathrm{d}y - v \mathrm{d}x = \int_{\mathcal{C}} \boldsymbol{v} \cdot \boldsymbol{n} \, \mathrm{d}s. \end{split}$$

曲線 C を単位時間に横切る流量. (n; C の単位法線ベクトル)

流れ関数の等高線 $\Psi = \operatorname{Im} f = \operatorname{const.}$ …流線

複素速度ポテンシャル

- 流れの領域 ∅ における複素解析関数 f(z).
- 流速 $\mathbf{v} = (u, v)$ $f'(z) = u \mathrm{i} v.$
- 障害物の周に沿って Im f = const.

問題

ひとつの障害物 D をすぎるポテンシャル流で,遠方で一様流 $\mathbf{v} \sim (U,0)$ となるものを求める.

問題

ひとつの障害物 D をすぎるポテンシャル流で,遠方で一様流 $\mathbf{v} \sim (U,0)$ となるものを求める.

次を満たす複素速度ポテンシャル=複素解析関数 f(z) を求めればよい.

- f(z) は流れの領域 𝒯 で解析関数である.
- Im f(z) = const. on $\partial \mathcal{D}$.
- $f(z) \sim Uz$ as $z \to \infty$. *
- * 一様流 $\mathbf{v} = (U,0)$ を与える複素速度ポテンシャルは f(z) = Uz.

代用電荷法による複素速度ポテンシャル近似

$$f(z) \simeq f_N(z) = Uz - \frac{\mathrm{i}}{2\pi} \sum_{j=1}^N Q_j \log(z - \zeta_j),$$

電荷 (unknown) $Q_1,\ldots,Q_N\in\mathbb{R},\quad \sum_{j=1}^N Q_j=0,$

電荷点 (given) $\zeta_1, \ldots, \zeta_N \in D$.

- f_N(z) は流れの領域 ② で解析関数である.
- f_N(z) の与える流れは無限遠で一様流となる.

$$\therefore f_N(z) \sim Uz - \frac{\mathrm{i}}{2\pi} \underbrace{\sum_{j=1}^N Q_j \log z}_{0} = Uz \quad (z \to \infty).$$

$$f(z) \simeq f_N(z) = Uz - \frac{\mathrm{i}}{2\pi} \sum_{i=1}^N Q_i \log(z - \zeta_i).$$

境界条件: $\operatorname{Im} f = \operatorname{const.}$ on $\partial \mathcal{D}$ \downarrow

拘束条件

Im
$$f_N(z_i) = C$$
 $(i = 1, ..., N)$,
拘束点 (given) $z_1, ..., z_N \in \partial D$,
 C : 未知実定数.

拘束条件 & $\sum_{i=1}^{N} Q_i = 0$ \Rightarrow 未知電荷 $Q_i(, C)$ を決定

$$f(z) \simeq f_N(z) = Uz - \frac{\mathrm{i}}{2\pi} \sum_{j=1}^N Q_j \log(z - \zeta_j),$$

拘束条件
$$\operatorname{Im} f_{N}(z_{i}) = C$$
 $(i = 1, ..., N), \sum_{j=1}^{N} Q_{j} = 0.$

拘束条件&
$$\sum_{j=1}^{N}Q_{j}=0$$
 $ightarrow$ Q_{j},C に対する連立一次方程式

$$\begin{bmatrix} G_{11} & \cdots & G_{1N} & 1 \\ \vdots & & \vdots & \vdots \\ G_{N1} & \cdots & G_{NN} & 1 \\ 1 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} Q_1 \\ \vdots \\ Q_N \\ -C \end{bmatrix} = \begin{bmatrix} -U(\operatorname{Im} z_1) \\ \vdots \\ -U(\operatorname{Im} z_N) \\ 0 \end{bmatrix},$$

$$G_{ij} = -\frac{1}{2\pi} \log|z_i - \zeta_j|, \quad 1 \leq i, j \leq N.$$

この連立一次方程式を解いて未知電荷 $Q_i(,C)$ を得る.

円柱 |z| < r を過ぎる一様流.

拘束点
$$z_i = r\omega^{i-1}$$
 $(i = 1, ..., N)$ 電荷点 $\zeta_j = qr\omega^{j-1}$ $(j = 1, ..., N)$, $\omega = \exp\left(\frac{2\pi \mathrm{i}}{N}\right)$, $0 < q < 1$.

この数値例では、N = 32, q = 0.4 ととった.

誤差の目安(境界条件に対する誤差).

$$\epsilon_{\it N} := \max_{|z|=r} | \, {
m Im} \, f_{\it N}(z) - C | = 8.6 imes 10^{-14}.$$

複数の障害物 D_1, \ldots, D_L を過ぎる流れ

複素速度ポテンシャル

$$f(z) \simeq f_{N}(z) = Uz - rac{\mathrm{i}}{2\pi} \sum_{l=1}^{L} \sum_{j=1}^{N_{l}} Q_{j}^{(l)} \log(z - \zeta_{j}^{(l)}), \quad N = (N_{1}, \dots, N_{L}).$$

各障害物 D_1, \ldots, D_L 内に電荷を置く.

$$egin{align} Q_1^{(I)}, \dots, Q_{N_I}^{(I)} \in \mathbb{R}, & \sum_{j=1}^{N_I} Q_j^{(I)} = 0, \ & \zeta_1^{(I)}, \dots, \zeta_{N_I}^{(I)} \in D_I, \ & I = 1, \dots, L. \ \end{matrix}$$

$$f(z) \simeq f_{N}(z) = Uz - rac{\mathrm{i}}{2\pi} \sum_{l=1}^{L} \sum_{j=1}^{N_{l}} Q_{j}^{(l)} \log(z - \zeta_{j}^{(l)}),$$

境界条件
$$\operatorname{Im} f(z) = \operatorname{const.}$$
 on ∂D_I , $I = 1, \dots, L$.

拘束条件

Im
$$f_{N}(z_{i}^{(I)}) = C_{I}$$
 ($i = 1, ..., N_{I}$), $z_{1}^{(I)}, ..., z_{N_{I}}^{(I)} \in \partial D_{I}$, C_{I} : 未知実定数, $I = 1, ..., L$.

拘束条件 &
$$\sum_{j=1}^{N_l} Q_j^{(I)} = 0 \; (I = 1, \dots, L) \quad o \quad Q_j^{(I)}(, C_l) \;$$
を決定.

楕円柱と円柱を過ぎるポテンシャル流.

$$\begin{split} D_1 &= \left\{ \; z \in \mathbb{C} \; | \; |z+\mathrm{i}r| < r \; \right\}, \\ D_2 &= \left\{ \; x+\mathrm{i}y \in \mathbb{C} \; \left| \; \frac{x^2}{A^2} + \frac{(y-r)^2}{B^2} < 1 \; \right\}, \right. \\ A &= \frac{1}{2} \left(\rho + \frac{r^2}{\rho} \right), \quad B = \frac{1}{2} \left(\rho - \frac{r^2}{\rho} \right), \quad \rho = 2r. \end{split}$$

代用電荷法の拘束点 $z_i^{(I)}$, 電荷点 $\zeta_i^{(I)}$ ($\omega = \exp(2\pi i/N_1)$).

$$z_{i}^{(1)} = r\omega^{i-1} - ir, \quad \zeta_{i}^{(1)} = q_{1}r\omega^{i-1} - ir \quad (i = 1, ..., N_{1}, 0 < q_{1} < 1),$$

$$z_{i}^{(2)} = A\cos\left(\frac{2\pi(i-1)}{N_{2}}\right) + iB\sin\left(\frac{2\pi(i-1)}{N_{2}}\right) + ir,$$

$$\zeta_{i}^{(2)} = A_{q}\cos\left(\frac{2\pi(i-1)}{N_{2}}\right) + iB_{q}\sin\left(\frac{2\pi(i-1)}{N_{2}}\right) + ir,$$

$$A_{q} = \frac{1}{2}\left(q_{2}\rho + \frac{r^{2}}{q_{2}\rho}\right), \quad B_{q} = \frac{1}{2}\left(q_{2}\rho - \frac{r^{2}}{q_{2}\rho}\right), \quad \rho^{-1} < q_{2} < 1.$$

* 数値実験では、 $N_1 = N_2 = 64$, $q_1 = 0.4$, $q_2 = 0.6$ ととった.

ポテンシャル流の流線,および, 楕円柱・円柱に働く力. 柱に働く力は Blasius の公式を 用いて算出した.

流れの中に2物体を置くと、2物体間に引力が働く、

Blasius の公式

物体 D_1 に働く力 $\mathbf{F} = (F_x, F_y)$.

$$F_x - iF_y = \frac{i}{2}\rho_m \oint_C \{f'(z)\}^2 dz$$

(ρ_m : 流体の質量密度).

* 導出は「補遺」

代用電荷法による近似複素速度ポテンシャルを代入して,

$$F_x - \mathrm{i} F_y \simeq \frac{\rho}{2\pi} \sum_{l=2}^L \sum_{j=1}^{N_1} \sum_{k=1}^{N_l} \frac{Q_j^{(1)} Q_k^{(l)}}{\zeta_j^{(1)} - \zeta_k^{(l)}}.$$

H. Ogata, D. Okano & K. Amano: Computations of the forces on obstacles in two-dimensional potential flows by the charge simulation method, Information 4 (2002) 307–318.

- 代用電荷法:ポテンシャル問題の数値解法
 - 点電荷ポテンシャルの重ね合わせで解を近似.
 - 計算(プログラミング)が簡単,計算量は少ない。
 - ある条件下で高精度を達成.
- 代用電荷法による複素解析関数の近似.複素対数ポテンシャルの重ね合わせで関数近似.
- 二次元ポテンシャル流問題への応用.
 - 複素速度ポテンシャル:複素解析関数で流れが記述される.
 - 代用電荷法による複素速度ポテンシャルの近似.
 - 流れの中の物体に働く力(Blasius の公式).

補遺:Blasius の公式の証明

* 今井功:複素解析と流体力学,日本評論社 (1989).

時刻 t における流体中の(物体 D_1 を囲む)閉曲線 C(t) が,微小時間後の時刻 t+dt には C(t+dt) になったとする.曲線に囲まれた流体の運動量の微小時間 dt における変化を二通りに表す.

・ 微小線素 ds を時間 dt に通り過ぎ る運動量は

$$ho_{\mathrm{m}} \emph{v}(\emph{v} \cdot \emph{n}) \mathrm{d} \emph{s} \mathrm{d} \emph{t} =
ho_{\mathrm{m}} \emph{v} \mathrm{d} \Psi \mathrm{d} \emph{t}$$
であるから、

$$\oint_{\mathcal{C}} \rho_{\mathrm{m}} \mathbf{v} \mathrm{d} \Psi \cdot \mathrm{d} t.$$

 Newton の運動方程式より、時間 dt における運動量の変化は (流体が受ける外力)×dt に等しい、作用・反作用の法則により流体は物体 D₁ から力 −F を受ける、それと、流体の圧力 p を考慮して、

$$-\mathbf{F}\mathrm{d}t - \oint_C \mathbf{p}\mathbf{n}\mathrm{d}s\cdot\mathrm{d}t.$$

補遺:Blasiusの公式の証明

$$\begin{split} \oint_{\mathcal{C}} \rho_{\mathrm{m}} \textbf{\textit{v}} \mathrm{d} \Psi &= -\textbf{\textit{F}} - \oint_{\mathcal{C}} \textbf{\textit{p}} \textbf{\textit{n}} \mathrm{d} s, \quad \textbf{\textit{F}} = -\oint_{\mathcal{C}} \rho_{\mathrm{m}} \textbf{\textit{v}} (\textbf{\textit{v}} \cdot \textbf{\textit{n}}) \mathrm{d} s - \oint_{\mathcal{C}} \textbf{\textit{p}} \textbf{\textit{n}} \mathrm{d} s, \\ F_{\mathsf{x}} - \mathrm{i} F_{\mathsf{y}} &= -\oint_{\mathcal{C}} \rho_{\mathrm{m}} w \mathrm{d} \Psi - \mathrm{i} \oint_{\mathcal{C}} \textbf{\textit{p}} \mathrm{d} \overline{\textbf{\textit{z}}} \quad (w = u - \mathrm{i} v). \end{split}$$

ここで,

$$\mathrm{d}\Psi = \frac{\partial \Psi}{\partial z} \mathrm{d}z + \frac{\partial \Psi}{\partial \overline{z}} \mathrm{d}\overline{z},$$

$$\frac{\partial \Psi}{\partial z} = \frac{1}{2} \left(\frac{\partial \Psi}{\partial x} - \mathrm{i} \frac{\partial \Psi}{\partial y} \right) = -\frac{\mathrm{i}}{2} (u - \mathrm{i}v) = -\frac{\mathrm{i}}{2} w, \quad \frac{\partial \Psi}{\partial \overline{z}} = \frac{i}{2} \overline{w}$$

であるから,

$$F_x - \mathrm{i} F_y = \frac{i}{2} \rho_\mathrm{m} \oint_C w^2 \mathrm{d}z - \mathrm{i} \oint_C \left(\frac{1}{2} \rho_\mathrm{m} |w|^2 + p\right) \mathrm{d}\overline{z}.$$

ここで、Bernoulli の定理より $\frac{1}{2}\rho_{\rm m}|w|^2+p={\rm const.}$ であるから右辺第 2 項の周回積分が消えて、Blasius の公式を得る。